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Abstract

A popular approach to self-driving is imitation learning, in which a neural network
is trained to predict the actions of an expert driver for a given input. For research
performed on simulators, these expert drivers are usually computer programs
that have privileged access to the simulation. While these approaches are more
cost-efficient than using labels from humans, their quality is worse because existing
expert driver approaches are not able to safely drive through urban environments.
We improve upon prior work and propose SEED, a Simple and Effective Expert
Driver that can safely navigate through urban environments even under challenging
adversarial traffic scenarios. We show its utility by training an existing imitation
learning architecture to imitate SEED. The resulting TransFuser+ method sets a new
state-of-the-art on the challenging NEAT validation routes and outperforms the best
prior work on the CARLA leaderboard.
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1 Introduction

Autonomous vehicles are a promising technical solution to important problems in
transportation. Every year more than a million people die due to traffic accidents
[1] primarily caused by human error [2]. Automating driving has the potential to
drastically reduce these accidents. Additionally, self-driving cars could improve
the mobility of people who are not able to drive themselves. The use of supervised
machine learning has become the dominant approach to autonomous driving because
it can handle high-dimensional sensor data such as images well. To train machine
learning algorithms in an end-to-end fashion, meaning directly optimizing a neural
network to perform the full driving task, one needs demonstrations from an expert
driver. Industrial research often collects data from human expert drivers, but this
approach is expensive in terms of money and time.
Simulations [3, 4] are frequently used to perform research on autonomous driving
because new ideas can safely be tested in them. In simulations, an alternative to
human experts called privileged experts is available to perform the data collection
task. Privileged experts are computer programs that have direct access to the
simulator (e.g. knowing the positions of all cars), circumventing the challenging
perception task. These privileged experts can generate labeled data faster than
human experts and at basically no cost.
However, existing privileged expert approaches are flawed in that they cannot
drive safely without causing collisions or violating traffic laws. Existing rule based
approaches are too simplistic and lack in implementation quality, whereas learning
based approaches fail to generalize to all scenarios. The result is a reduced quality of
the labels in the dataset. This leads to reduced performance of the imitation learning
agents and as a result the community is currently underestimating existing imitation
learning architectures.
In this work, we propose a Simple and Effective Expert Driver (SEED) that can safely
navigate in a realistic 3D simulator with adversarial traffic scenarios. We show that
it outperforms the prior best privileged expert approaches [5, 6] on the challenging
NEAT validation routes [7]. To demonstrate the utility of SEED, we train an existing
sensorimotor architecture (TransFuser [6]) with its labels. The improved TransFuser
sets a new state-of-the-art on the NEAT validation routes, with no changes made
to its inference architecture. It also achieves competitive results on the CARLA
leaderboard similar or better than the current top methods [8, 9] which combine
reinforcement learning with supervised learning.

Our contributions are as follows:
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Chapter 1. Introduction

• We propose an expert driver method that outperforms prior approaches and is
able to safely drive in a realistic 3D urban driving simulator with adversarial
scenarios.

• We demonstrate its utility by training an existing approach with its data and
show that it improves the driving performance of the architecture

• We show how the inertia problem [10] can be addressed by a simple controller
mechanism, allowing researchers to make and measure progress despite its
existence.

• We investigate the impact of the different components in an ablation study.

The rest of the work is structured as follows. In chapter 2 we discuss existing
approaches to self-driving, including end-to-end imitation learning approaches
and modular pipelines. We also introduce reinforcement learning, its application to
autonomous driving, and we discuss existing expert driver approaches. In chapter 3
we describe the problem setting in more detail, introduce the SEED approach and the
relevant techniques used. We also review the TransFuser architecture and describe
some improvements we have made to its controller and training. In chapter 4 we
describe our experimental setup, introduce the baselines and present the results.
We show the impact of different components in an ablation study. In chapter 5 we
summarize the thesis and outline directions for future research that it points to.
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2 Related Work

Autonomous driving systems have been classified into 6 levels/categories by the
society of automotive engineers [11]:

0. Driver Only: Systems that assist the human driver, by warning him, but do
not control the car.

1. Assisted: The system exerts lateral or longitudinal control. The human driver
has to monitor the situation and be able to take over at any time.

2. Partial Automation: The system performs lateral and longitudinal control. The
human driver has to monitor the situation and be able to take over at any time.

3. Conditional Automation: The system performs lateral and longitudinal control
in a specified use case. The system is responsible for monitoring the situation,
and the human must be able to take over upon request.

4. High Automation: The system controls the car in all situations in a specific
use case. A human driver is not required as long as the conditions for the use
case are met.

5. Full Automation: The system controls the car in all situations. No human
driver is required.

Our work focuses on full automation within a realistic 3D self-driving simulator.

Early research on autonomous driving research dates back to the 1980s, with the
pioneering work of ALVINN [12]. There they developed a level 1 assisted system
that controls the lateral steering of a car based on a camera and laser range sensor.
They trained a fully connected 3 layer neural network on simulated road images
that was then deployed on a real car and could follow empty roads. This approach
where a neural network directly takes the sensor data as input and outputs driving
commands was later called end-to-end driving. Another pioneering work was that
of Ernst Dickmanns as part of the European PROMETHEUS project [13]. They
demonstrated the first long distance drive from Munich to Odense at 95% level 2
partial automation. They used the other dominant approach in self-driving called
modular pipeline, wherein the system is separated into individual modular tasks.

Modular pipelines and end-to-end systems and continue to be the dominant ap-
proaches to this day and are described in more detail in section 2.1 and 2.2.
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Chapter 2. Related Work

Performing research in autonomous driving is complicated because developing an
autonomous car is expensive. First, it requires a car equipped with a special sensor
suite. Secondly, testing systems is dangerous, as mistakes by the driving system
can lead to severe accidents. Therefore, special testing facilities or safety drivers are
required to evaluate a system. Finally, to evaluate a system, it has to drive a large
amount of kilometers in diverse situations and weather conditions. One way to
avoid this problem is to only work on an individual task used in modular pipelines,
such as object detection. Another is to evaluate the proposed method only open
loop meaning that the system’s behavior is compared to the recorded decision of
a human driver on a particular data sample. This is known to not correlate well
with real world driving performance of a system [14]. A third approach that has
gained popularity in recent years is to evaluate methods in a driving simulator
closed loop. This means that the system gets control over the car and is evaluated
based on its driving performance. The advantages of simulators are that methods
can be cheaply evaluated closed loop, driving conditions can be freely controlled
(such as weather) and testing dangerous scenarios is safe as no real damage occurs
when the car crashes. Their disadvantage is that they simplify reality to varying
degrees, and hence not all complexities of the real world problem are modeled. A
particular noteworthy self-driving simulator is CARLA (CAR Learning to Act) [3].
It has been specifically designed for developing and testing self-driving approaches
and is open source and freely available to anyone at no cost. It can simulate most
relevant self-driving sensors and has reasonably realistic graphics based on a modern
game engine. Perhaps most importantly, it has a leaderboard [15] where teams can
evaluate their approaches on secret test routes on provided third party servers.
This allows for objective and fair comparisons of competing methods and gives the
community a way to measure its progress. At the time of writing, no method is able
to safely drive on the novel conditions of the leaderboard or even close to it. The
community is making steady progress though. We work with the CARLA simulator
in this thesis. Some examples of how it looks can be seen in figure 2.1. In this work
we often show images from a bird’s eye view perspective, on which weather effects
may look less realistic (because they have been built for 3rd and 1st person view)
but which provides a better overview over the situation.

2.1 Modular Pipeline

In the modular pipeline approach, the driving task is separated into individual
modules that are trained or programmed individually. Often the tasks of perception,
planning and control are considered, but more fine-grained distinctions are also
sometimes made. An advantage of the modular pipeline approach is that the
intermediate representations (such as semantic segmentation) are chosen by a
human designer and hence are interpretable. A disadvantage may be that the
intermediate representations could be suboptimal and are not optimized for the
final driving task. Failures in earlier modules can propagate into later modules. The
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2.1. Modular Pipeline

(a) Town 01 EU style intersection (b) Town 03 Free View

(c) Town 03 US style intersection (d) Town 10 HD

Figure 2.1: Some example images from different CARLA towns.
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Chapter 2. Related Work

different modules can be effectively developed in parallel by a large team. This
might be one reason why the modular pipeline approach has become the standard
approach in industrial research [16].
MP3 [17] for example, is a recent publication from Uber. Its perception stack predicts
dynamic states of actors and an online map of the road from voxelized LiDAR data.
The online map consists of BEV representations for drivable areas, intersections,
reachable angles and lanes. The dynamic state consists of an BEV occupancy map
and a BEV temporal motion field. A motion planning module then converts these
representations into trajectories that the car should follow (presumably executed by
a controller).
In CARLA research, the modular pipeline has not been particularly popular so
far. One notable instance was the modular pipeline approach described in the
original release of the CARLA simulator [3]. It decomposed the driving task into
perception, planning and continuous control. The perception stack estimates a
semantic segmentation of the input camera image and a classification model to
determine the proximity to intersections. The semantic segmentation image is then
used to estimate lanes, road limits, car and pedestrians and other hazards. The
planning module is a state machine that for the different states (road-following,
left-turn, right-turn, intersection-forward and hazard-stop) produces waypoints
that describe the desired position and orientation of the car in the near future.
These waypoints are then converted into the car commands by a PID controller. The
modular pipeline performed similar to imitation learning in this evaluation.
A second notable modular pipeline approach is Pylot [16]. Pylot is a modular pipeline
framework developed to accurately measure the impact of the runtime of individual
components. Algorithms that are slow have in reality a lower accuracy because the
world around it has changed by the time the algorithm finishes its prediction. This
problem is also called streaming perception [18]. Pylot’s components include object
detection, object tracking, prediction, planning and control. They provide several
baselines for each component. The method is built for a simulator, but can also
be deployed on a real car with minimal changes. The modular pipeline has been
an under-explored area on openly available simulators. At this point, we do not
have conclusive evidence whether it is better or worse than end-to-end approaches.
Individual components of the modular pipeline are however well explored. Several
computer vision datasets like KITTI [19] or Cityscapes [20] focus on self-driving.
Planning and control are also well explored areas, see for example [21, 22].

2.2 End-to-End

End-to-End driving describes approaches in which the entire driving task is done
by a single neural network that takes in the raw sensor data and outputs the
driving commands. Sometimes also methods are described with this label that
have additionally a controller (like a PID) that converts the network output to
steering, throttle and brake commands. Advantages of this approach are that the
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2.2. End-to-End

intermediate representations are jointly optimized for the driving task and that
supervision labels can be obtained cheaply (which matters for real world data
where supervising intermediate representations such as semantic segmentation is
expensive). Its downsides are that the methods are not very interpretable. When the
methods make a mistake it is often hard to debug as intermediate representations
of a neural network have no semantic meaning for a human. There are two major
approaches to train End-to-End models: imitation learning and reinforcement
learning.

2.2.1 Reinforcement Learning

Reinforcement Learning is the paradigm of learning through trial and error. In this
field the environment in which our agent (the computer program that is trying to
learn) acts is often modeled as a Markov Decision Process (MDP) (S,A,P,R,γ). S is
the set of all possible states, A the set of all possible actions, P is the state transition
probability matrix describing the probability of the next state given the previous
state and action pair, R is the reward function describing the expected return given
a state and action pair and γ is a discount factor ∈ [0,1] weighting down future
rewards. The goal of the agent typically is to find a policy π : S→ A that maximizes
the discounted expected return.

Basic reinforcement learning algorithm are often developed in game like simulations
that can be executed very fast. The most important one being the Atari benchmark
[23] in which agents are trained to learn how to play classic Atari games from
the input screen. Deep Q-Learning (DQN) [24] was the first major success on this
benchmark combining convolutional neural networks (CNN) with replay buffers,
Q-Learning and target networks. The Q-function Q(s,a) describes the expected return
when the agent chooses action a in state s and then follows policy π(s) afterwards. It
is usually represented by a neural network. The dataset to estimate it is generated
by executing the current policy in the environment and storing observation, action,
reward and next observation in a replay buffer. The Q-function is then estimated
by sampling experiences from the replay buffer and calculating its gradient using
temporal difference learning:

∇Q← ((r +γ ∗max
a′

Q′(s′,a′))−Q(s,a))2 (2.1)

where r is the observed reward in the current sample, γ a parameter to discount
future rewards, s′ the next state, s the current state, a the current action and Q′ the
target network (a periodical copy of the Q network used to stabilize learning). The
max operator in this equation can be computed because the action space is assumed
to be discrete and small enough to evaluate all possible actions. The actual policy π
is then implicitly defined:

π(s) := argmax
a

Q(s,a) (2.2)
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Chapter 2. Related Work

(a) Maximizing a 1-Dimensional Q function
in the discrete case just amounts to picking
the highest point.

(b) With continuous action spaces, a policy
network predicts for a given state an ac-
tion. This prediction can then be improved
by following the gradient along the Q-
function and updating the network with
backpropagation.

Figure 2.2: A conceptual illustration of the Q-function in the 1-dimensional case,
keeping the state fixed. Figure a) is for the discrete case, figure b) illustrates
the continuous case.

This assumption is of course a limitation because in some domains like autonomous
driving the action space is continuous, making the max operation intractable. The
typical strategy used by continuous control reinforcement learning algorithms is to
represent the policy explicitly. That policy is then represented by a parameterized
neural network that takes as input the current state and outputs an action. This
policy can then be updated using the insights of the Policy Gradient Theorem [25]
by alternately minimizing the following terms:

∇Q← ((r +γ ∗Q′(s′,π(s′)))−Q(s,a))2 (2.3)

∇π←−Q(s,π(s)) (2.4)

The parameters of the policy π can then be adjusted via backpropagation. This is also
illustrated in figure 2.2 where we compare conceptually the two different approaches
in the case of a 1-dimensional Q-function.

This approach is called actor (=policy) critic (=Q-function). With the method deep
deterministic policy gradient (DDPG) [26] it was demonstrated that this approach
works if combined with experience replay and target networks (similar to the discrete
case).

One problem of these deterministic algorithms is that they are quite sensitive to
hyperparameters and even the seed that they are trained with. Additionally, training
a reinforcement learning algorithm can be quite slow in practice (requires many
samples and fast simulators) which makes using these algorithms hard. Soft Actor
Critic [27] is an algorithm that yields competitive performance on continuous control
tasks and has been shown to be more robust to hyperparameters and the seed. It
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2.2. End-to-End

is an actor critic algorithm that expands the standard objective to maximizing the
expected future return while acting as randomly as possible (maximizing the entropy
of the policy). This changes the update equations to the following terms:

∇Q← ((r +γ ∗ (Q′(s′,π(s′))−α log(π)))−Q(s,a))2 (2.5)

∇π←−Q(s,π(s)) +α log(π) (2.6)

where α is a tradeoff parameter between maximizing entropy and maximizing
reward (it can be tuned automatically [28]). The entropy objective incentivizes the
policy to explore more during training. The policy also gains the ability to capture
multiple optimal strategies. We use this algorithm in our reinforcement learning
ablation because of its robustness to hyperparameters and the seed.

2.2.2 Reinforcement Learning for Autonomous Driving

The intersection between autonomous driving and reinforcement learning started
being investigated around 2016 [29]. Almost all work is using driving simulations
to train and evaluate their methods. One notable exception is [30] where they only
used simulation to find appropriate hyperparameters for their method. The training
was then done on a real car, with a safety driver preventing collisions and resetting
the car after episodes. They were able to successfully train their car to perform lane
keeping on a road similar to what ALVINN made possible in 1988 [12] with imitation
learning. This work was done in a highly simplified setting. Much more diverse
scenarios and tasks need to be able to be performed for reaching full autonomy.

It is of note that at the time of writing, there is no published report that we are
aware of that achieves competitive results training a sensorimotor agent purely
using reinforcement learning at the complexity of simulators like CARLA. One
notable attempt has been made with the publication of the CARLA simulator [3]
where a state-of-the-art reinforcement learning algorithm was vastly outperformed
by conditional imitation learning and modular pipeline.

A considerable body of research exists on RL for AD [29, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48], but most of it assumes access to privileged
information that is not available for sensorimotor agents or is evaluated on much
simpler simulators. The reason for this lack of performance of reinforcement learning
in autonomous driving, compared to games like Atari, is that autonomous driving
requires training deep neural networks like ResNets for perception. This is however
beyond the state-of-the-art of RL. Most "Deep" Reinforcement Learning approaches
can only train small MLP networks and ConvNets or require an impractical amount
of data to converge [49].

This is not to say that reinforcement learning is useless for autonomous driving, only
that we can not currently train entire methods solely with reinforcement learning. In
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Chapter 2. Related Work

fact, it has been successfully applied in combination with supervised learning.

Controllable Imitative Reinforcement Learning (CIRL)[50] was the first approach
to achieve this in CARLA. Here they fine-tuned a fully trained imitation learning
agent using a reinforcement learning algorithm with a small learning rate. This
improved the performance of the agent on the original CARLA benchmark.

One of the best approaches on the current CARLA leaderboard is Implicit Affor-
dances [9] (called MaRLn on the submission). Here they separate their training
into two stages. They train the perception ResNet part of the architecture on the
auxiliary task of semantic segmentation using standard supervised learning. The
segmentation head is then cut off and an intermediate layer is used as input for the
rest of the network (the implicit affordances). The weights of the ResNet are then
frozen during the rest of the training. The remaining fully connected layers in the
architecture are then trained using reinforcement learning. Intuitively speaking, they
train perception supervised and planning and control with reinforcement learning.

A third successful application of reinforcement learning in CARLA is World on Rails
[8]. In this work, reinforcement learning was applied in a rather uncommon fashion.
They used it to improve the quality of labels on an offline dataset collected by an
expert driver. They use a reward function to evaluate all possible actions of the agent
for each data point in the dataset. The resulting state is determined by simulating the
agent with a bicycle model and all other traffic participant with the world on rails
assumption (meaning they do the exact same action as in the dataset, independent of
the ego agent’s behavior). The Q value for each action is calculated using backward
induction and dynamic programming. A standard supervised sensorimotor agent is
then trained to predict the Q-scores for each action. At the time of writing, it is the
best published approach on the CARLA leaderboard.

2.2.3 Imitation Learning

Imitation learning is the current dominant approach to train end-to-end models. In
this approach, the network is trained to predict for a given input the action that an
expert driver (that it is imitating) would have done. Formally, it can be described as:

argmin
θ
Es∼P(s|πθ)[L(π∗(s),πθ(s))] (2.7)

where π∗ is the expert policy, πθ the learned policy and L some loss function. Note
that here the states s depends on the current policy πθ. In the popular variant of
behavior cloning, an expert driver collects a static dataset instead by driving around
and recording the sensor inputs as data and his actions as labels. Behavior cloning
can be described as:

argmin
θ
E(s∗,a∗)∼P∗[L(a∗,πθ(s∗))] (2.8)

where the state and target actions come from the dataset P∗ which is collected by
the expert policy. The network is then trained with standard supervised learning
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2.2. End-to-End

methods from this offline dataset. A particular problem this approach has it that
the expert usually does not make many mistakes, and therefore there are few or no
examples in the dataset on how to recover from mistakes. When the trained network
is then evaluated closed loop, it can lead to failure when the network encounters
new situations after making a mistake which it does not know how to recover from.
A popular approach to alleviate this problem is called Dataset Aggregation (DAGGER)
[51] which iteratively builds the dataset. Here, a static dataset is first collected by
the expert. The model is then trained and evaluated closed loop. When the network
makes a mistake the expert will take over and recover from it, adding this particular
example to the training dataset. This process is then iteratively repeated.

Another problem of pure imitation learning is that there can be situations where
the optimal action is ambiguous. An example is an intersection where both turning
left and turning right are possible actions. The dataset might even contain examples
of the expert doing both actions. In the worst case, the method then averages the
actions and drives straight. The solution to this problem is to condition the input
based on a high level driving command or target position created by a navigational
planner. In this approach, called Conditional Imitation Learning (CIL)[52], inputs
come together with a command such as turn right or follow lane. It has been widely
adopted in the imitation learning literature since then.

Some examples of conditional imitation learning approaches are:

CILRS [10] improves classic CIL by using a deeper perception architecture (ResNet),
image-net pre-training and speed prediction as auxiliary loss. They also introduce
the NoCrash benchmark, on which models are trained on one town and evaluated
on another. The metric is then how many percent of routes the agent completes
without crashing in empty, regular or dense traffic conditions.

Learning by Cheating [53] is the first method to fully solve the original CARLA
benchmark, achieving a hundred percent on all test settings. It also performs
competitively on the NoCrash benchmark. It is of note here that the original CARLA
benchmark was rather simple, containing tasks like driving straight or taking one
turn. While this work is good progress, we are still far away from solving full
autonomy. The method uses a rule based expert driver to train another neural
network based expert driver (the cheater). The cheating network uses bird eye view
semantic segmentation ground truth as input. It is then used to train a sensorimotor
agent that does not cheat and drives based on camera images. While learning by
cheating performs remarkably well on the original benchmark, it does not do so well
on more recent benchmarks that feature challenging scenarios, such as the CARLA
leaderboard or the NEAT validation routes.

TransFuser [6] is a method that looks at how LiDAR point cloud data can be
combined with RGB camera images in an end-to-end architecture. They do so by
projecting the point cloud into a bird’s eye view image. Both camera and BEV image
are then processed by a residual network. Information between the two branches is
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Chapter 2. Related Work

then exchanged using Transformer blocks [54]. Another important contribution of
this work is the way they condition their network. Instead of a binary command,
the next target location is provided as a 2D coordinate in the car’s local coordinate
system. A recurrent network processes this point and predicts the position of the
expert driver multiple time steps into the future. The approach is described in more
detail in section 4.4.3. Methods using this waypoint network work remarkably well
in lane following / lateral control.

Neural Attention Fields (NEAT) [7] is a very recent method that regresses bird’s eye
view vectors pointing to the path that the car should follow. It does so by querying
an implicit continuous representation of the scene (MLPs) at discrete locations. The
inputs are 3 camera images processed as usual with a ResNet and fused together
with a transformer. It was the prior state-of-the-art on the NEAT validation routes.

2.2.4 Expert Drivers

Expert drivers are the methods used to generate the labels and collect the data for
imitation learning methods. In principle this can be a human driver and this is a
common approach in industrial research. In CARLA research however this is rarely
done in practice, researchers do not spend weeks of their time playing the CARLA
simulator. Instead, methods with privileged access to the simulator are used as an
expert to supervise the sensorimotor agents. These methods, while perhaps not
as good as the human, can collect data faster than real time and can be executed
in parallel. Data quality plays an important role in supervised machine learning.
However, these expert drivers are often of secondary interest in publications, briefly
described in the appendix and not evaluated quantitatively.

The recent method reinforcement learning coach (Roach)[5] is the only work we are
aware of that explicitly investigates this topic. They create a birds eye view semantic
segmentation like input representation using ground truth access to the simulator
and train a convolutional neural network using a popular reinforcement learning
algorithm. While it improved over prior work, it is expensive to train, difficult to
extend and does not achieve perfect scores either.

We argue in this work that an expert driver achieving maximum score is an important
preliminary to correctly evaluate the performance of imitation learning methods.
It can also give insights into the necessary components required to solve the task.
Lastly, it is of note that since imitation learning methods search for correlations in the
input data with the expert actions, only input information that the expert uses can
be useful for the learning task. For example, if the expert only uses information from
its front, then a method using full 360° cameras just has a lot of data that contains no
correlations with the expert’s actions. It is therefore important to design the expert
to use all relevant information.
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In this chapter, we explain the problem setting and describe our expert driver method
SEED (a Simple and Effective Expert Driver). An overview of SEED can be seen in
figure 3.1. The problem setting is introduced in section 3.1. The basic components
object-oriented bounding boxes, bicycle model, PID controller and A* planner are
introduced in section 3.2. SEED is discussed in detail in section 3.3. We also train a
sensorimotor agent to imitate SEED, which is described in section 3.4.

3.1 Problem Setting

We consider the task of driving from a starting point to predefined goal locations.
Agents are supposed to drive safely along a route in an urban setting in simulation
while following traffic rules. The agents will experience challenging adversarial
scenarios along the route, described in more detail in chapter 4. We differentiate
between two types of agents.
(1) The privileged expert drivers which have direct access to the simulator. Their
input can be any representation that the simulator can provide. Their output is
the steering, throttle and brake commands of the car. The purpose of privileged
expert drivers is to serve as an expert to be imitated by imitation learning methods.
Put in other words, they automatically generate the labels for supervised learning
approaches. The quality of these labels largely depends on the performance of the
expert driver method.
(2) The sensorimotor agents solve the same task as the privileged agents, but they
only have access to sensor data that would be available in a car deployed in the
real world. Such sensors include cameras, LiDARs, GPS, speedometer and inertial
measurement units (IMU). Their output again are the steering, throttle and brake
controls of the car.

The starting point and destination for the agents are user defined. We follow the
standard protocol of CARLA 0.9.10.1 that provides a navigational planner. This
navigational planner calculates a route between the starting point and destination.
This route is provided as dense GPS waypoints for the privileged agents and as
sparse GPS waypoints (potentially hundreds of meters apart) for the sensorimotor
agents.
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Figure 3.1: Flow chart of SEED
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3.2 Preliminaries

3.2.1 Object oriented bounding boxes

Cars are complex objects represented in simulation by meshes that a build of a
lot of triangles. This makes answering questions such as whether two cars collide
computationally very expensive. Naively, one would have to perform an intersection
test between each of the triangles of two cars. Fortunately, cars can be accurately
approximated by (object) oriented bounding boxes (OBB). These are rectangular
cuboids that entail the car and are oriented in such a way that the least amount of
additional volume is added compared to the car object. It is a well studied object in
the computer games literature and natively supported by many simulations. Using
them, we can represent a car with just 9 numbers. The x, y, z coordinates of its
center, the pitch, yaw and roll for orientation and the x, y, z extent along each axis.
Compared to their axis aligned versions, they are a tighter fit for the object and
can be used to reason about multiple bounding boxes in global coordinate space.
We use OBBs to represent all objects of interest: cars, pedestrians, bicycles, light
trigger boxes and stop sign trigger boxes. To know whether two cars will collide,
we need to know whether the two OBBs representing them intersect. For that we
use an oriented bounding box intersection test [55] that given two OBBs in global
coordinate space will tell us whether they intersect.

3.2.2 Bicycle model

To predict where a car will be at the next time step, we need to have a model of
its dynamics. We choose the popular bicycle model [56] because of its simplicity
and the observation that it is an accurate model for cars in the CARLA simulator.
The bicycle model is illustrated in figure 3.2. The two front and back wheels are
merged into one wheel, and we assume we are driving on a flat plane. Only the front
wheel can be steered in this model. The input of the model is the current position
x, y, velocity v, orientation ψ, acceleration a and the front wheel steering angle s of
the car. Using the following equations it calculates the position x′, y′, orientation ψ′

(yaw) and velocity v′ of the car after some time ∇t.

β(s) = arctan
(
tan(s)

lr
l f + lr

)
(3.1a)

x′ = x + vcos(ψ+β(s))∇t (3.1b)
y′ = y + vsin(ψ+β(s))∇t (3.1c)
v′ = v + a∇t (3.1d)

ψ′ = ψ+
v
lr

sin(β(s))∇t (3.1e)

We estimate the parameters lr, l f as well as how throttle, brake and steering translates
into acceleration and angle using the procedure from [8]. In short, the procedure
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collects a dataset of the car driving around and optimizes the parameters such that
the model best predicts the positions of the car.

Figure 3.2: An illustration of the bicycle model.

3.2.3 PID controllers

Control is the problem of executing a particular plan. In our case, this means
minimizing an error quantity like difference to target speed. Just directly minimizing
the error quantity is called proportional control. In practice, it often has the problem
of oscillating behavior. To address this, the standard solution is to also consider
the integral and derivative of the error function over time. This approach is simply
called Proportional Integral Derivative control (PID) [57] and is widely used to
address control problems. The goal of a PID controller is to minimize the error at
time step t (e(t)) using the following equation:

y(t) = Kpe(t) + Ki

∫ t

t−a
e(τ)dτ+ Kd

de(t)
dt

(3.2)

Here y(t) is the output and Kp, Ki, Kd are parameters. Since we sometimes drive for
a long time, we only calculate the integral for a fixed time window by setting the
parameter a = 40. The simulation is running at discrete time steps of 50 ms, therefore
the integral turns into a sum and can easily be computed. The PID controller is
illustrated in the following python style pseudocode:

class PIDController(object):
def __init__(self, K_P, K_I, K_D, a=40):
self.integral_buffer = deque([0.0 for _ in range(a)], maxlen=a)
self.last_error = 0.0
self.K_p = K_P
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self.K_i = K_I
self.K_d = K_D

def step(self, error, delta_time):
self.integral_buffer.append(error * delta_time)
integral = sum(self.integral_buffer)
derivative = (error - self.last_error) / delta_time
self.last_error = error

return self.K_p * error + self.K_i * integral + self.K_d * derivative

The parameters Kp, Ki, Kd have to be manually tuned for each PID controller. There
exist various heuristics for doing so.

3.2.4 A* search algorithm

The A* search algorithm [58] is a classical solution to the problem of finding
the shortest route in a graph. It is guaranteed to find the optimal solution and
computationally efficient, but has a high memory demand. It starts at a start node
and iteratively builds a tree of paths by checking neighboring nodes. It estimates the
cost of a path by adding the cost from the start to the current node with a heuristic
estimating the cost of the cheapest path from the current node to the goal (such as
euclidean distance, for example). The next node to examine is chosen based on the
estimated cost. To get the final path after the goal has been reached, each node stores
its predecessor. The path is then found by backtracking from the goal to the start in
the end.
The CARLA leaderboard client provides an implementation of the A* algorithm that
given a start will find a route to a destination point. That route is represented as a
set of dense waypoints in the center of the road that follow the route.

3.3 SEED

Our privileged expert has to predict 3 outputs: steering, throttle and brake. We build
upon the TransFuser Expert [6, 7] which uses the same basic architecture as shown
in figure 3.1. SEED differs from this TransFuser Expert in the way it answers the
traffic rules and collision avoidance questions. To explain the system, we start with
the observation that lateral control (steering) can be treated independently of the
longitudinal control (throttle and brake). Lateral control is especially simple. It is
sufficient to follow the path from the start to the goal. The path is determined by
a high level A* path planner and is represented as a dense list of 2D waypoints. If
the path is blocked by a car or pedestrian, one can simply wait until they move out
of the way. We follow the global path by setting the steering error, that our lateral
PID controller will minimize, to the angle of the car towards the next waypoint. The
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angle is normalized to lie in range [−2,2]. The next waypoint is the closest waypoint
that is farther than 4 meters away from the center of the car. The car will then always
drive directly towards this waypoint [59]. Since the next waypoint is constantly
changing as the car progresses, this leads to the car moving along the predetermined
path. The dense path is visualized in the following images as black cubes and the
waypoint that the car is currently driving towards is marked white (e.g. figure 3.3).
For longitudinal control, we differentiate between three target speeds: Regular
driving which is set to 4.0 meters per second (m/s), driving through a junction which
is set to 3.0 m/s and stopping the car where the target speed is 0.0 m/s. We always
stop the car as fast as possible by performing a full brake. This is of course not ideal
in terms of passenger comfort. However, at the current stage of CARLA research, we
first need to achieve full safety before improving other metrics like speed or comfort.
At the time of writing, there is no sensorimotor approach that can consistently drive
in CARLA 0.9.10.1 without collisions. Keeping the car at the desired target speed is
achieved with a PID controller that minimizes the difference between the measured
speed and the desired target speed. The target speeds are simple parameters in SEED
and can be easily adjusted if needed. The current cruising speed is fast enough to
clear the routes in the time budged granted by the CARLA leaderboard.

So far, we stayed relatively close to prior work. The actual hard part in designing an
expert driver, and this is where prior work fails at, is deciding when to brake. In
CARLA there are four causal reasons to slow down: Red lights, stop signs, vehicle
hazards and pedestrian hazards. We treat each of them independently and if any of
these conditions is true we will set the target speed to zero and stop the car.

3.3.1 Traffic Rules

Traffic lights: The CARLA 0.9.10.1 simulator provides a flag for vehicles whether a
red light is currently affecting them. The TransFuser Expert uses that flag to decide
whether to brake or not. While this is in principle not a bad idea, in practice we
observe that this flag provided by CARLA is unreliable. It has both false positives,
telling the car it is affected by a red light even though no traffic light is around (the
TransFuser Expert catches these cases), and false negatives, telling the ego vehicle
there is no red light affecting him while it is running one. The result is that the
TransFuser Expert frequently runs red lights, negatively affecting the quality of the
labels generated.

Here we engineer a new approach for red light detection that does not have the
aforementioned problems. In CARLA, every traffic light has a so-called trigger
box attached to it. This trigger box is an oriented bounding box that is oriented
orthogonal to the street and located before the entry to the intersection. We define an
additional oriented bounding box following and entailing the agent car that we call
light detector OBB. At every time step, we go through the trigger boxes of all traffic
lights in the scene. We prefilter them and only consider the once whose centers are
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withing a certain distance (set to 15 meters) to the center of the vehicle. For each
traffic light, we perform an OBB intersection test between the connected trigger box
and the light detector OBB. If an intersection is detected, we look up the traffic light
state of the traffic light connected to the trigger box. If the traffic light state is either
yellow or red, we consider the red light as detected and the vehicle will come to a
stop. The method is visualized in figure 3.3. The light detector OBB is the large red
box around the car. It is extended behind the car because the trigger boxes are often
some distance before the entry of the intersection. In our visualizations, the traffic
light trigger boxes change color according to its associated traffic light state (red,
yellow or green). The light detector box changes its color from white to red when a
red or yellow light is detected.

Figure 3.3: The red light detection. The small red box is the trigger box of the traffic
light, colored in its state. The large red box around the car is the light
detector box that follows the car. When the light detector box intersects
with a red or yellow trigger box, it will turn red and the car stops.
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Stop signs: We handle stop signs similarly to traffic lights. Each stop sign has a
trigger box attached to it in CARLA. After pre-filtering all stop signs analogously to
traffic lights, we perform again an OBB intersection test between the trigger box and
the standard bounding box of the car. If there is an intersection and the stop sign is
not yet cleared, we will mark the stop sign as detected and slow the vehicle down.
Once we have reached speed 0 the stop sign is marked as cleared and the car will
continue driving. After leaving the intersection, the list of cleared stop signs will be
emptied again. An example is shown in figure 3.4.

(a) SEED driving towards a stop sign. (b) SEED slowing down to clear the stop
sign before continuing.

Figure 3.4: Stop sign on the road, represented by its green trigger box. When SEED
approaches, it turns red until cleared.

3.3.2 Collision Avoidance

Vehicle Hazard: To explain our vehicle hazard detection algorithm, we first want to
outline how the prior work TransFuser Expert handled this problem. The TransFuser
Expert checks a static (cone like) area in front of it. The vehicle hazard is marked as
detected if a car is in that area. From a basic perspective, this algorithm is answering
the question:
"Is there something in my way?"
We argue that this is fundamentally the wrong question to ask, and illustrate this
with an example in figure 3.5.

In this figure, the black vehicle at the bottom is representing the expert driver. The
vehicle and bicycle are driving straight with constant speed. In a situation like it is
depicted in figure 3.5a the collision logic predicts no hazard because there is nothing
directly in front of the car. This decision is wrong because there will likely be a
collision with the oncoming cyclist. By the time the static cone detects the cyclist it
will be too late to stop the car (cars need a certain distance to come to a halt) likely
leading to a crash. The car should slow down now to avoid the situation. In another
situation like depicted in figure 3.5b the TransFuser Expert collision logic predicts to
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(a) False negative. No collision is predicted
even though the agent is in a dangerous
situation.

(b) False positive. The agent can already
start driving again because the cyclist
will be gone in time.

Figure 3.5: Illustrative explanation of the old collision logics failure cases.

wait because of the cyclist in front of the car. However, this is unnecessary because
the cyclist will have moved forward by the time the car arrives at that location.
We argue that instead the hazard detection algorithm should answer the question:
"Will there be something in my way?".
This means reasoning about where other traffic participants and the agent will be
in the future. This is the question we want our agent to answer. To do that, we
need an understanding of how cars move over time. For that, we use the previously
explained bicycle model. Given the position, orientation, and speed of the car as
well as the current action (steer, throttle, brake) the bicycle model can predict the
position, orientation and speed at the next time step. Now, the problem is of course
that looking one time step (=50ms) into the future does not yet tell us a lot. Since we
do not know our action at future time steps, we need to make an assumption at this
point. We call the assumption the action repeat assumption, namely we assume that
we apply the same action at future time steps again. This assumption is of course to
some extent violated in reality, but the difference does not matter much in practice,
as shown in chapter 4. So now we can iteratively use the output of the bicycle model
as input for the next time step and get a prediction of where the car will be at each
time step t. We extrapolate 3 seconds into the future at junctions, where paths of cars
are frequently crossing. Everywhere else, we extrapolate 1 second. As resolution, we
use the same time steps as the simulator, namely 50ms. We apply the same procedure
to each vehicle in a radius of 50 meters. To detect vehicle hazards, we then do a OBB
intersection test between the ego agent’s OBB at time step t and the OBB of each
other car at time step t. If an intersection happens, we have predicted a collision on
the current course and the vehicle hazard is set to true. An example of this can be
seen in figure 3.6 where the agent performs an unprotected left turn.
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(a) SEED correctly assesses that driving now
would lead to a collision (red boxes).

(b) SEED waits until the oncoming traffic has
passed and then crosses the intersection.

Figure 3.6: SEED performing an unprotected left turn.

In the figure, the OBBs of other vehicles are rendered blue. The OBBs of the ego
vehicle are rendered green. At the time steps where a collision is predicted, the OBBs
of the ego vehicle are colored red. As shown, SEED successfully predicts that on the
current course of action, there will be a collision in the future. It slows down to let
the other vehicles pass first and crosses the intersection when there is enough space.

Another example can be seen in figure 3.7, where a cyclist runs a red light leading to
a dangerous situation inside an intersection. SEED correctly predicts the oncoming
collision and slows down to let the cyclist pass first. Note that simply checking a
static area in front of the car like the TransFuser Expert does would have likely led
to a collision in this situation because by the time the cyclist is in front of the car it is
too late to stop.

(a) SEED predicts a collision on the current
course.

(b) SEED slows down to let the cyclist pass
first.

Figure 3.7: A cyclist has run a red light, leading to a dangerous situation at an
intersection. SEED successfully predicts it and avoids the collision.
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Cars need a certain time to get to a halt, so a minimum distance to preceding vehicles
should always be kept. The distance depends on the speed the car is driving at and
can be approximated with the following formula:

b = (
v

10.0
)2/2.0 (3.3)

where v is the velocity of the car in km/h and b is the resulting braking distance.
We realize this by placing a bounding box covering the resulting distance b in front
of the car. If it intersects with any other bounding box at time step 0 we stop. An
example of this can be seen in figure 3.8 where SEED waits some distance behind
the preceding car at a red light.

Figure 3.8: SEED keeping a safe distance to the preceding vehicle indicated by the
red box.

An additional modification we make to the bicycle model is that we set the brake
action of the ego vehicle always to 0. Since we use the algorithm to determine whether
to brake we need to know what happens if we do not brake. Another assumption
implicit in the algorithm is that there are no obstacles in the vehicle’s path (which
would lead to a crash and stop it). It can happen that cyclists trying to cross the
street drive against a handrail and get stuck. We pre-filter stuck vehicles/cyclists to
avoid that their bounding boxes block the agent’s path. Avoiding static objects on
the street is left for future work, as this situation currently almost never happens in
CARLA 0.9.10.1
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Pedestrian hazards are handled analogously to vehicle hazards. The only difference
is that we use a different dynamics model to describe the pedestrian. Specifically,
we treat pedestrians as simple points with a velocity (applied to the direction they
are oriented in) and an acceleration. This is sufficient to precisely describe their
trajectories, as pedestrians only run in straight direction across the street in the
CARLA leaderboard client. An example can be seen in figure 3.9.

(a) SEED a collision with the pedestrian on
the current course.

(b) SEED slows down to let the pedestrian
pass first.

Figure 3.9: A pedestrian crossing the street. SEED predicts a collision and waits for
the pedestrian to cross.

3.4 TransFuser+

To show that SEED improves imitation learning methods, we generated a training
dataset with it. We used that dataset to retrain the TransFuser [6] architecture. The
dataset was generated with the same training routes to make the dataset comparable.
To get the most out of the new dataset, we also made some improvements to the
training and controller. The individual contributions are investigated in an ablation
study in section 4.6.

3.4.1 TransFuser architecture

We have made no changes to the inference architecture of the TransFuser network.
During training, we added two additional decoder heads to the image branch
of the architecture. These decoder heads are used for auxiliary tasks, semantic
segmentation and depth prediction. It has been shown [7] that these auxiliary tasks
help for image only models. We apply the same ConvNet decoders on the image
branch and report similar findings for this multi-modal architecture. The architecture
design is illustrated in figure 3.10.
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Figure 3.10: TransFuser+ architecture. Adapted from [60] with permission of the
author.

The inputs to the method are a 256x256 monocular camera image and a bird’s eye
view (BEV) image of the LiDAR point cloud. The LiDAR point cloud is voxelized
into two channels (higher and lower than 50 cm above the street) and each pixel
correspond to the number of LiDAR hits in that area (up till a maximum of 5). An
example of the LiDAR can be seen in figure 3.11 and of the image in figure 3.12.

Figure 3.11: An example of the BEV LiDAR input. The two images correspond to
the two different channels

Both inputs are processed by standard residual network architectures. In the hidden
layers information is exchanged between the two branches using transformer [54]
blocks. For the auxiliary losses, the output of the image branch is up-scaled to
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Figure 3.12: An example of the image input.
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the original resolution using 2D convolutional layers, ReLU activation functions
and bilinear interpolation. The features from the image and LiDAR branch are
then concatenated and processed by a multi layer perceptron (MLP). Finally, an
autoregressive GRU [61] processes the features together with the goal location, to
output waypoints. A PID controller then finally transforms the waypoints into the
desired vehicle controls.

The model is trained to predict the position of the (SEED) expert 0.5, 1.0, 1.5 and
2.0 seconds into the future using an L1 loss. Additionally, we leverage multitask
learning [62] and predict a 2D semantic segmentation map using the cross entropy
loss and a 2D depth map using the L1 loss. We minimize the following equation:

λ0

4∑
t=1

(xt−x′t) + (yt− y′t) +λ1

H∗W∑
i=1

di−d′i +λ2LCE(s,s′) (3.4)

where the lambdas are hyperparameters with λ0 = 1, λ1 = 1, λ2 = 10. Letters with
a prime indicate the predicted values. LCE is the cross entropy loss between the
correct semantic class s and the predicted one s′, di denotes the depth at pixel i and
xt and yt describe the x and y coordinates of the expert at time step t.

3.4.2 Controller

We make some improvements to the controller. In the official CARLA leaderboard
client, the LiDAR sensor is running at a lower frequency (10 Hz) than the simulation
(20 Hz). The result is that the received LiDAR data will alternate between the front
half of the car and the back half of the car (each 180°). For an example of this, see
figure 3.13. Note that we only voxelize the left half for our input. Since our data is
stored at even (10) intervals, we only have LiDAR data from the front inside our
dataset (odd frames send the back half). To avoid having novel LiDAR data at test
time we use an action repeat of 2 meaning we process every second input.

When treating lateral and longitudinal control independently (like we do here) a
particular failure case can arise with the use of PID controllers. If the car stops and
waits (e.g. at a red light) while the current lateral error is high, this high error can
accumulate in the integral of the PID controller. After the car starts moving again
the integral can dominate the other terms for a while leading to a wrongly executed
maneuver and potentially a crash. For an example, see figure 3.14 where the failure
happened after the agent waited at a red traffic light. This is a consequence of the
fact that cars need to move forward in order to move laterally (and reduce lateral
error). Our solution is to simply set the lateral error to 0 while the car is standing
still, as it cannot be minimized anyway.

Imitation learning models are known to suffer from causal confusion problems, in
particular the inertia problem [10]. The inertia problem describes the phenomenon
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Figure 3.13: LiDAR input at two consecutive time steps projected to BEV. The left
image represents even time steps, the right image represents odd time
steps

Figure 3.14: Network predicts driving straight, but the PID controller fails to execute
and crashes after waiting at a traffic light.
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that when a vehicle stays still, the probability that it continues to stay in place (e.g.
at a red light) is very high in the training data. This can lead to the trained agent
never starting to drive again after having stopped because it learned to attend to
these spurious correlations instead of the real causes. The causal confusion problems
are even amplified in our situation because SEED has a full 360° field of view (FOV)
and uses the velocity and acceleration of other cars in his reasoning process. Some
causes for SEED’s decisions cannot be discovered by the TransFuser agent because it
only has a 180° FOV. The TransFuser architecture also can not estimate the velocity
and acceleration because that would require temporal reasoning (tracking objects
over time to estimate their velocity and acceleration). The architecture operates on a
frame by frame basis without any memory. As shown in section 4.6 the TransFuser+
is heavily affected by the inertia problem.

Using speed prediction as auxiliary task during training has been proposed to
alleviate this problem [10]. It is unclear however why his approach helps, it does
not fully solve the inertia problem and has not been widely adopted since then. We
propose another approach to address the inertia problem that is easy to understand
and can be added on top of any method. We start with the observation that the
causal confusions we encounter are brittle. Since there is no causal signal for the
action, small changes such as creeping forward can already break the agent out of
the confused state. Specifically, we add an unblock controller to our method. If the
car has not moved for more than s (=45) seconds, we force the car to creep forward
by setting the target speed of the PID controller to 4 m/s for a short amount of time
(1.5 seconds). The value s is chosen to be higher than the amount of time we expect a
car to wait at a red light. This creeping forward is enough to make the TransFuser+
agent drive on its own again. This approach alone however would be unsafe because
it could happen for example that the agent is stuck in traffic where creeping forward
could lead to a collision. Fortunately, this situation is easy to detect with the LiDAR.
We additionally implement a safety controller that overwrites the unblock controller.
It checks whether there are any LiDAR hits in a rectangular area in front of the
car. Filtering noise hits is not necessary because CARLA does not simulate realistic
LiDAR noise. If any are detected the target speed is set to 0 bringing the car to an
immediate stop. The safety controller makes the unblock controller safe. As a nice
bonus, the safety controller also sometimes prevents failure cases, where the agent
crashes during normal driving mode.
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In this section we will describe our evaluation methodology, introduce the baselines
and discuss results.

4.1 Task

We consider the task of driving in an urban setting in the realistic 3D simulator
CARLA version 0.9.10.1 [3]. We use routes that cover both highway and residential
areas. Agents are supposed to follow routes which are provided as GPS waypoints
by an A* navigational planner. The goal is to arrive at the target location in a given
amount of time while incurring as little infraction penalties as possible. Infractions
that are penalized are:

• Collision with a pedestrian

• Collision with a vehicle

• Collision with a static object

• Running a red light

• Running a stop sign

• Driving on the wrong lane or sidewalk

• Leaving the route specified by the navigational planner

Along the routes, there are dangerous scenarios specified which the agent needs to
resolve in order to safely arrive at his destination. There are currently 10 different
scenarios specified:

• Rubble on the road leading to a loss of control.

• Leading vehicle suddenly performs an emergency brake.

• A pedestrian hidden behind a static object suddenly runs across the street.

• After performing a turn at an intersection, a cyclist suddenly drives across the
street.

• A slow vehicle gets spawned in front of the agent.

• A static object is blocking the street.
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• Crossing traffic is running a red light at an intersection

• The agent must perform an unprotected left turn at an intersection with
oncoming traffic

• The agent must perform a right turn at an intersection with crossing traffic

• Crossing an unsignalized intersection.

4.2 Routes

To collect the dataset we follow the procedure of [7] collecting data from the 8
publicly available towns. The routes consist of many tiny routes where SEED crosses
an intersection and some longer routes where SEED drives around the towns. A set
of very long routes from town 1-6 is reserved for open loop validation. The data is
stored every 10th frame (at 2 FPS) and the weather is changed at the same frequency.
In total, the dataset contains roughly 130 thousand examples.
For our closed loop validation experiments, we follow the evaluation protocol of [7]
using 42 routes that consist of 14 routes that are each repeated 3 times under different
weather conditions. The weathers consist of combination between weather conditions
(Clear, Cloudy, Wet, MidRain, WetCloudy, HardRain and SoftRain) and daylight
conditions (Night, Twilight, Dawn, Morning, Noon, Sunset). For the privileged
experts we only run one weather as the weather only affect the camera inputs used
by the sensorimotor agents. We will call these routes the (NEAT) validation routes
in the following. As test set, we use the official CARLA Leaderboard [15] test set.
It consists of 10 secret routes evaluated on 2 unknown weather conditions with 5
repetitions (100 routes in total). Submissions are made by submitting the inference
code in a docker container that is then secretly tested on a server by a third party.
Performance results are substantially lower than on any other CARLA benchmark
[7, 10, 3] indicating that the CARLA leaderboard is much more challenging. The
CARLA leaderboard does not allow privileged access to the simulator, hence the
expert drivers are evaluated on the validation routes only. Teams have a fixed
monthly budget of 200 hours for evaluating submission. Because of this, not all our
baselines are evaluated on the leaderboard.
Implementation details: We train the TransFuser+ method for 100 epochs using the
AdamW [63] optimizer with a learning rate of 0.0001 and pick the epoch with the
best waypoint open loop validation loss. In one of the ablations, we use a learning
rate schedule and reduce the learning rate by a factor of 10 after 30 epochs.

4.3 Metrics

We measure the performance of the agents using the 3 official metrics of the CARLA
leaderboard Route Completion (RC), Infractions Score (IS) and Driving Score
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(DS).

4.3.1 Route Completion

Route Completion (RC) is the percentage of the route that is completed by the agent.
If the agent drives on a wrong lane or sidewalk, that percentage of the route will not
be counted. If the agent left the route specified by the navigational planner or gets
blocked, the episode will end, effectively reducing the route completion.

4.3.2 Infraction Score

Infraction Score (IS) is a penalty for infractions where the agent starts with a score
of 1.0. For every infraction, the score is multiplied by the penalty coefficient of that
infraction type. The penalty coefficients are:

• Collision with a pedestrian: 0.50

• Collision with a vehicle: 0.60

• Collision with a static object: 0.65

• Running a red light: 0.70

• Running a stop sign: 0.80

Note that this means that subsequent infractions will have a lower impact due to the
multiplicative nature of the score.

4.3.3 Driving Score

Driving Score is the main metric for performance and a combination of the previous
two. It is calculated in the following way:

DS =
1
N

N∑
i

RCiISi (4.1)

where N is the number of routes, RCi the route completion of route i and ISi
the infraction score of route i. Note that this is not the same as multiplying the
averaged route completion with the averaged infraction score. The driving score is a
normalized metric, meaning that the best possible score is 100 and the worst score is
0. For the validation routes, we run them with 3 different seeds and report the mean
and standard deviation of the 3 scores averaged across the routes.

43



Chapter 4. Experiments

4.4 Baselines

We compare our TransFuser+ method with several popular baselines, including the
recent state-of-the-art approach World on Rails [8]. SEED is compared to the prior
best experts, Roach [5] and TransFuser Expert [6].

4.4.1 Conditional Imitation Learning ResNet Speed

Conditional imitation learning [52] has become the dominant approach in imitation
learning. All sensorimotor baseline described below are based on it. It is based
on the observation that pure imitation learning has a problem at intersections.
At intersections multiple valid paths are possible turning left or turning right for
example. A pure imitation approach has no way of deciding between them and
in the worst case takes an average between the options such as driving straight.
Conditional imitation learning fixes this problem by conditioning the network on a
command by the navigational planner (such as turn left or turn right) or supplying
the network with a target waypoint. Conditional Imitation Learning extended with
ResNet and Speed prediction CILRS [10] is such a conditional imitation learning
approach that uses residual networks as image backbone and velocity supervision
as auxiliary loss during training.

4.4.2 Learning by Cheating

Learning by Cheating LBC [53] is an approach in which a second privileged expert
based on a neural network is trained to emulate a rule based expert. This second
expert (the cheater) closely resembles the network structure of the sensorimotor agent
that is trained to imitate it. It uses a semantic segmentation bird’s eye view image
as input that is processed by a ResNet and outputs waypoints that are processed
by a PID controller to produce the driving controls. The sensorimotor agent uses a
similar network design but takes as input a frontal camera image, the car’s velocity
and the conditional command by the navigational planner. Using the DAGGER
[51] approach the cheater teaches the sensorimotor agent how to drive. Learning by
Cheating was the first approach to solve the original CARLA benchmark.

4.4.3 Auto-regressive IMage-based waypoint prediction

AIM [6] is an improved version of CIRLS that predicts waypoints with a gated
recurrent unit (GRU) [61] architecture and uses a PID controller for execution instead
of directly predicting the control outputs. The goal is to predict the position of the
expert driver 4 steps (a 0.5 seconds) into the future. The GRU unit then takes as
input a 2D point and a hidden state. The hidden state is at the first time step the
features from the encoded image, and at later steps the output of the previous time
step. The input point to the GRU is the predicted waypoint from the last time step +
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the target waypoint from the navigational planner. At the first time step, the last
predicted waypoint is simply (0/0). The output of the GRU is then fed through a
linear layer to be reduced to a 2D point and added to the last predicted waypoint.
These predicted waypoints are then processed by a PID controller, which turns them
into driving commands.

4.4.4 AIM Multi-Task

AIM-MT [7] is an improved version of AIM that uses multitask learning to improve
the training. In particular, we report the version that uses 2D semantic segmentation
and 2D depth estimation as auxiliary losses during training.

4.4.5 NEural ATtention fields

NEAT [7] is a conditional imitation method that takes three camera images as input.
Like prior work, they are processed to features using ResNets. It aggregates the
features from the different images with a Transformer block. For visualization, it can
output a 2D bird’s eye view map that describes at every pixel the 2D offset vector
to the path that the car should follow. During inference, 9 points of this map are
queried, and their result is averaged. It achieves this by representing the scene as
implicit continuous functions represented by MLPs. The waypoint map is created
by querying the network at each position in the map. During querying, the target
point from the navigational planner is provided to the MLP. During training, the
network is also trained to predict the auxiliary task of BEV semantic segmentation.
PID controllers turn the vector to the path into the car’s commands. The red light
class from the semantic segmentation map is also used to stop at test time.

The results of the previously described baselines have been reported in [7].

4.4.6 TransFuser

The TransFuser [6] method is similar to AIM in its basic structure. It differs in that it
also uses the LiDAR point cloud as input. The LiDAR point cloud is projected into a
bird’s eye view image and processed with a ResNet, similar to the image branch.
Features between the image ResNet and the LiDAR ResNet are interchanged in the
hidden layers using transformer blocks [54]. The TransFuser method is trained with
the TransFuser Expert. It is the baseline for our TransFuser+ method that is trained
with SEED.

4.4.7 World On Rails

Additionally, we reproduce the current state-of-the-art approach World on Rails
(WOR) [8]. It is an image based method that learns from prerecorded driving logs.
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To do that it makes the world on rails assumption, meaning that the agent’s actions
do not influence the environment. Similar to our approach, they use a bicycle model
to model the ego car. However, the movement of all other cars is determined using
the benefit of hindsight from the recorded logs. During training, the optimal action is
then determined with the use of a reward function. For each data point in the training
set, all possible actions (discretized) are simulated with the bicycle model and their
reward is computed. The action of the expert driver is then the one that maximizes
future reward (similar to Q-learning in reinforcement learning). The future reward
is calculated using backward induction and dynamic programming. An imitation
learning agent is then trained to imitate the action of this expert. More specifically,
the sensorimotor agent predicts a categorical distribution over the discretized actions.
During training, it is regularized with entropy maximization. Semantic segmentation
is used as auxiliary loss and the images are augmented. Note that their expert can
not be evaluated closed loop like the other experts discussed in this work, as it only
works on a prerecorded dataset. In some sense this work is similar to learning by
cheating as it uses an expert (the CARLA autopilot that collects the dataset) to build
another expert (the Q function) which aims to improve the autopilot’s actions using
information from a reward function. This second agent then has the advantage of
not only providing the optimal action to the sensorimotor policy, but also a score for
the suboptimal actions. It is not very clear whether/how errors made by the autopilot
propagate. Also, the Q function may not necessarily discover the real best action as
it optimizes a local shaping reward and not the desired sparse global reward (the
driving score).

4.4.8 TransFuser Expert

As for privileged experts, we report the performance of the expert used by the
TransFuser and NEAT architectures [6, 7]. It is the method that our SEED method
builds upon and uses a similar basic structure. Lateral control is done by minimizing
the angle towards the next waypoint with a PID controller. Longitudinal control
runs in two modes. Either the target speed is a fixed constant or zero in case the
car needs to stop. The car stops to obey traffic laws (red lights and stop signs) or
to avoid collision. Collision hazards are detected by checking if there are cars or
pedestrians in a static area in front of the car. A PID controller then controls the car
to drive at the desired target speed.

4.4.9 Reinforcement Learning Coach

Additionally, we reproduce the recent Roach method, which is the state-of-the-
art approach for privileged experts. It uses a privileged bird’s eye view input
representation (based on semantic segmentation) to train a reinforcement learning
agent. The author provided code base [64] uses an entirely new CARLA client for
training and evaluation. This new client is unfortunately not compatible with the
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scenario runner code base that is used to execute the 10 traffic scenarios that make
the validation set challenging. To run the evaluation, we made the inference code
run on the CARLA leaderboard client (which is publicly available at [65]). We note
that Roach has not experienced the scenarios during training and hence needs to
generalize to some extent during validation. Retraining the model weights with
scenarios enabled might improve the performance, but would require substantial
engineering efforts and training resources. This lack in flexibility is a major downside
to reinforcement learning based approaches.

4.4.10 SEED - Soft Actor Critic

To show that the performance improvement compared to Roach does come from
better planning and not better control, we train an MLP to do the control using the
Soft Actor Critic (SAC) algorithm [28] with planning done using SEED’s algorithm.
We chose this particular reinforcement learning algorithm because it is designed for
continuous control and is known to not require hyperparameter tuning. We confirm
these findings, the algorithm worked on our problem with the default hyperparame-
ters. As reward function we use the one from [9] with the implementation details
reported in [45]. Like [9] we also encounter the issue of oscillating driving behavior
which we also fix using an ensemble (of 6 networks). The input to the controller
MLP is the difference to the desired target speed, its integral and derivative, the
angle to the next waypoint, its integral and derivative and a binary flag on whether
to do an emergency brake. The output is a continuous value for throttle and steer. If
throttle is negative, we perform a full brake. The method is trained on tiny and short
routes from Town 01 with an action repeat of 4. While we found action repeat to be
important for training, it is unnecessary during evaluation, so we set it to 1. While it
is possible to achieve the same level of performance with reinforcement learning
than with a classical PID controller, the latter is much easier to implement and does
not require training. Hence, we do recommend the SEED version that uses PID for
control.

4.5 Results

The results for the experts on the NEAT validation routes are shown in table 4.1. The
results of the NEAT validation routes for the sensorimotor agents are shown in table
4.2. A snapshot of the publicly visible submissions on the CARLA leaderboard is
shown in table 4.4.

The proposed SEED expert outperforms the TransFuser Expert baseline by 28 points
in driving score, reducing the remaining error by roughly a factor of 4. It does
so primarily through safer driving, which can be observed through the increased
infraction score (by 18 percent). The route completion is also increased by roughly
10 percent. This is somewhat surprising as both methods use the same controller for
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Method RC ↑ IS ↑ DS ↑
TransFuser Expert [6] 86.05±2.58 0.76±0.01 62.69±2.36

Roach [5] 91.77±0.75 0.79±0.04 74.21±3.23
SEED - static 90.57±2.57 0.96±0.04 86.18±2.22

SEED - SAC (ours) 100.0±0.0 0.95±0.01 95.16±1.01
SEED (ours) 96.95±1.14 0.94±0.01 91.16±2.17

Table 4.1: Results on the NEAT validation routes for expert drivers.

Method Aux. Sup. RC ↑ IS ↑ DS ↑
CILRS [10] Velocity 35.46±0.41 0.66±0.02 22.97±0.90
LBC [53] BEV Sem 61.35±2.26 0.57±0.02 29.07±0.67

TransFuser [6] None 70.22±4.57 0.76±0.02 50.59±2.76
AIM [6] None 70.04±2.31 0.73±0.03 51.25±0.17

TF + new controller None 83.19±1.41 0.62±0.01 52.07±1.93
WOR [8] 2D Sem 81.20±1.99 0.74±0.01 60.63±0.22

AIM-MT [7] Depth+2D Sem 80.81±2.47 0.80±0.01 64.86±2.52
NEAT [7] BEV Sem 79.17±3.25 0.82±0.01 65.10±1.75

TransFuser+ (Ours) Depth+2D Sem 90.38±3.37 0.78±0.06 71.65±4.36

Table 4.2: Results on the NEAT validation routes for sensorimotor agents.

lateral control. We hypothesize that this is a result of fewer crashes (which can block
the agent and therefore reduce route completion), and fewer false positives of the
collision detection algorithm. SEED also outperforms the previous state-of-the-art
approach Roach by 16.95 points in driving score, again primarily due to safer driving.
We recorded the validation runs with a bird’s eye view spectator to visually inspect
the infractions. Out of the remaining infractions, none are the agent’s fault. They
occur due to measurement errors by the simulator. Some examples are other cars
actively driving into the waiting expert or driving over the dirt object on a slope
is incorrectly attributed as collision. SEED can therefore be said to have achieved
perfectly safe driving at the current task complexity. It is still possible to improve
the route completion, as SEED will always wait if something is blocking its path. In
some situations which we call route blocked it is possible to perform an overtaking
maneuver instead. On very short routes, timeouts can happen because the agent
is driving rather slow. At intersections, it can sometimes happen that the agent
starts driving too early and ends up stopping midway because oncoming traffic is
blocking its way. Both cars are blocking each other’s path and cannot move forward
anymore to resolve the situation. We call these situations stareoffs. Addressing these
problems is an interesting direction for future work, though one might need to
design validation routes first where these situations occur frequently. On the current
validation routes, these situations can occur randomly. To give an intuition how
often these situations occur, we show in table 4.3 how often they occurred in each of
SEED’s 3 repetitions on the NEAT validation routes.

48



4.5. Results

Cause Repetition 1 Repetition 2 Repetition 3
Route blocked 0 2 0

Timeout 0 0 0
Stareoff 1 0 1

Table 4.3: Counts of how often situations that reduce route completion happened
during SEED’s validation run.

It can happen that none of these situations occur, as is shown by the SEED - SAC
ablation. The resulting higher driving score of SEED - SAC is a result of this
randomness in the validation.

On the side of the sensorimotor agents, our method TransFuser+ outperforms all
methods trained using the TransFuser Expert. It has a 6.55 better driving score than
NEAT, the best method trained against the TransFuser expert, which is a relative
improvement of 10%.

# Method RC ↑ IS ↑ DS ↑
1 GRIAD1 61.85 0.60 36.79
2 TransFuser+ (ours) 69.84 0.56 34.58
3 WOR [8] 57.65 0.56 31.37
4 MaRLn [9] 46.97 0.52 24.98
5 NEAT [7] 41.71 0.65 21.83
6 AIM-MT [7] 67.02 0.39 19.38
7 TransFuser [6] 51.82 0.42 16.93
8 Pylot2 [16] 48.63 0.50 16.70
9 NEU4081 40.40 0.51 15.61

10 LBC [53] 17.54 0.73 8.94
11 CILRS [10] 14.40 0.55 5.37
12 CaRINA [66] 23.80 0.41 4.56
13 Cadre v11 65.66 0.07 2.77

Table 4.4: The CARLA leaderboard accessed 03.09.2021.

On the challenging CARLA leaderboard, TransFuser+ doubles the performance of the
original TransFuser submission with no changes made to the inference architecture
of the network. It outperforms the previous state-of-the-art approach World on
Rails (WOR) by 3.21 points in driving score, a relative improvement of 10%. The
number 1 ranked method General Reinforced Imitation for Autonomous Driving
(GRIAD) is concurrent work that at the time of writing has no public report yet.
Out of all the publicly available submissions, TransFuser+ has the highest route
completion. The previously best two methods, WOR and MaRLn both use some

1No report is available for this submission, at the time of writing.
2Uses HD-Map
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form of reinforcement learning to supplement the supervised learning. In this work
we argue that the expert generating the data, hence the label quality, was what was
holding pure imitation learning approaches back and show that they can still achieve
competitive performance.

4.6 Ablation Study

The entry SEED - static in table 4.1 gives insight into the contributions of SEED’s
components. The traffic rules logic of SEED is combined with the static collision
avoidance logic of the TransFuser Expert in this experiment. The traffic rules logic
contributes 23.49 points in driving score. Running red lights was the biggest problem
of the TransFuser Expert. We recorded the validation run and additionally report
that 5 avoidable collisions happened in the 3 repetitions. The average infraction
score is surprisingly high because no unavoidable infractions happened. The agent
also got stuck 5 times due to false positives of the collision logic.
This shows, that the collision avoidance logic of SEED is necessary to reach the
highest possible driving score and safety.

To understand the impact of the different components of the sensorimotor architecture
TransFuser+, we show multiple submissions on the CARLA leaderboard in table 4.5.

Method RC ↑ IS ↑ DS ↑
TransFuser [6] 51.82 0.42 16.93
TransFuser + SEED 34.85 0.72 21.05
TransFuser + SEED + unblock 63.71 0.58 31.80
TransFuser + SEED + unblock + aux. loss 72.45 0.53 33.11
TransFuser + SEED + unblock + aux. loss + lr. schedule 69.84 0.56 34.58

Table 4.5: Ablations on the CARLA leaderboard.

First, we can see that training the TransFuser with data from SEED improved the
safety of the resulting model. The infraction score went up by 30%. However, the
new dataset introduces a new problem where the agent simply stops driving at
certain points, reducing the route completion by 16.97. This we can deduce from
the additional metrics the leaderboard provides. The submission gets a score of
11004.34 Agent blocked /km. This means that on 11 routes, the agent never started
to drive. We hypothesize that this is because the TransFuser architecture can not
understand certain decisions made by SEED that would require temporal reasoning
or a 360° field of view. It therefore miss attributes the causes for SEED to stop to
correlations in its input data, leading to unnecessary stops during evaluation. The
unblock controller described in section 3.4.2 fixes this particular issue, improving the
overall driving score by 10.75 points and reducing the agent blocked metric to 3.29.
The submission now strictly dominates the original TransFuser in all 3 metrics. The
unblock controller reduces average infraction score. We think this is because when
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the agent drives more, then there are more possibilities for accidents to happen. For
example, not driving at all would give you a perfect infraction score of 1.0 but of
course the worst driving score of 0.0.
To show that performance improvements come from the combination of better expert
and controller and not just from the new controller changes, we run an ablation of
the old TransFuser weights with the added controller improvements. It is shown in
table 4.2 as the entry TF + new controller. As shown, the controller changes increase
the route completion of the TransFuser. The old TransFuser however is worse at
driving safely, so driving more led to a lower average infraction score. As a result,
the driving score stayed relatively similar, showing that the new SEED expert is the
primary reason for the performance improvement.
Adding depth and semantic segmentation auxiliary losses improves the driving
score a little by 1.31 points. Lastly, tuning the learning rate schedule improved the
performance by another 1.47 points. This submission, which we call TransFuser+
now doubles the score of the original TransFuser submission. This is achieved
through better training signals and controller improvements with no changes made
to the inference architecture.

Runtime: We evaluate the runtime performance of our methods on a laptop with an
Intel Core i7-9750H CPU and an NVIDIA RTX 2070 GPU. To measure the runtime
we take the average over the last 100 cycles of the run_step function which provides
the sensor data and expects the car commands as return. TransFuser+ runs at a
speed of roughly 28 ms per cycle on average. SEED’s performance depends on the
traffic density around him (it performs collision checks for nearby vehicles). We ran
the experiment on 3 validation routes and observed runtime values between 8 ms
and 39 ms. Both methods can be considered to run in real time, which allows for fast
data collection and evaluation. Note that when one collects data with SEED the time
for preprocessing and storing sensor data on the hard-drive needs to be added.

4.7 Visualizations

Examples of SEED and TransFuser+ driving a route can be found in the supplemen-
tary videos at [67] and [68].
Another advantage of auxiliary supervision is that it can be used to gain some insight
into the end-to-end model by looking at the auxiliary predictions during inference.
An example of the different inputs and outputs is shown in figure 4.1. The scene
depicts the car waiting at an intersection in the European town 01. The input RGB
camera image is shown in figure 4.1a and the two LiDAR channels are depicted in
the figures 4.1c and 4.1d. They show the LiDAR point cloud projected to bird’s eye
view separated at 50 cm above the ground. You can see the depth prediction made
by the network in figure 4.1e and the semantic segmentation prediction in figure
4.1f. The semantic segmentation prediction is overlaid with 60% opacity on top of
the RGB input in figure 4.1b. The depth prediction seems to be able to decently
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estimate the skyline above the horizon and the sky, but the closer depths are all very
close to zero. The reason for this is the normalization of the training data, which is
normalized to depth in kilometers. Depth values that are close to the car are almost
zero, which in the visualization just look black. The network is only able to roughly
estimate the depth, and much structure is lost. This kind of depth supervision has
been shown to be beneficial to learning [7] but further improvements might be
possible with a more advanced depth prediction architecture.
The segmentation image is better, the road, lane marking, sidewalks and red light
are estimated nearly perfectly. This corresponds to our observation that the agent is
very good at lane following and waiting at European style red lights. The estimation
of the car is somewhat rough, but generally where it should be.

Figure 4.2 shows two different examples of the semantic segmentation at US style
intersections in town 03. For the most part, the impressions are similar to the
European town. The road, lane markings, cars and sidewalks are roughly fine. In US
style towns, the agent does struggle however with detecting the far away red lights.
In figure 4.2c only one of the two red lights is detected, and in figure 4.2d the red
lights are not detected. At intersection 2 the agent will run the red light. The reason
for this might be the rather low resolution (256x256) of the input RGB image. Since
US traffic lights are on the other side of the road, they are very hard to spot in the
input RGB image. How to scale architectures to work with higher resolution input
cameras seems to be an important question going forward.
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(a) The RGB camera input. (b) Semantic segmentation overlay

(c) LiDAR input channel 1 (d) LiDAR input channel 2

(e) Depth prediction (f) Semantic segmentation prediction

Figure 4.1: Example of the input to the network and corresponding depth and semantic
segmentation predictions.
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(a) The RGB camera input at intersection 1 (b) The RGB camera input at intersection 2

(c) Semantic segmentation prediction at in-
tersection 1

(d) Semantic segmentation prediction at in-
tersection 2

(e) Semantic segmentation overlay at inter-
section 1

(f) Semantic segmentation overlay at inter-
section 2

Figure 4.2: Example of the RGB input and semantic segmentation prediction at two different
US style intersections.
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5 Conclusion

Contemporary imitation learning approaches are held back by the quality of the
expert they are imitating. We have shown how to design privileged experts such that
they are able to drive safely in the CARLA simulator even in the presence of adver-
sarial scenarios. The resulting improved label quality translates into improvements
of existing imitation learning architectures. An important problem we encountered
with the new dataset was the inertia problem, wherein the sensorimotor agent does
not continue driving after having stopped. We show how a simple unblock controller
mechanism is enough to fix this problem, but more elegant solutions might also
exist. While the imitation learning agent has been improved, its performance is now
lower than that of the expert it is imitating. This reveals some important flaws in
contemporary neural network architecture design.
First, all current approaches developed for CARLA only use frontal vision. However,
to achieve full self-driving, a full 360° field of view is strictly necessary. Without this,
it is impossible to safely perform lane changes. An interesting direction for future
work is therefore how to integrate sensor information from the back side of the car
that is only relevant in rare but important situations. Since lane changes are rare in
current CARLA benchmarks, new validation sets might also need to be developed
in order to measure progress.
Secondly, trajectory forecasting, whether done explicitly or implicitly, is an integral
part of self-driving. It requires however the use of temporal reasoning to estimate
the velocity and acceleration of moving objects in the scene. Only few approaches
[69, 9] in CARLA currently make use of temporal data at all. It is an important open
question how to effectively integrate temporal data in end-to-end imitation learning
architectures. SEED gives an answer to these questions for privileged expert drivers,
and we hope it will help the community answer these questions for sensorimotor
architectures.
SEED is able to safely drive through CARLA yet occasionally gets stuck by cars
blocking the route. Developing an extension to perform overtaking maneuvers
would be an interesting direction to further improve it.
Lastly, at the current image resolution, traffic lights on the other side of the intersec-
tion (in US towns) can be hard or impossible to spot. Scaling architectures to higher
input resolutions is therefore an important open question, necessary to achieve zero
red light infractions.
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